ABSTRACTPulsed laser annealing and ion beam mixing have been used as surface modification techniques to enhance the physical properties of polycrystalline α-SiC. Thin Ni overlayers (20 nm - 100 nm) were evaporated onto the SiC surface. The specimens were subsequently irradiated with pulses of a ruby or krypton fluoride (KrF) excimer laser or bombarded with high energy Xe+ or Si+ ions. Both processes are non-equilibrium methods and each has been shown to induce unique microstructural changes at the SiC surface which are not attainable by conventional thermal treatments. Under particular (and optimum) processing conditions, these changes considerably increased the mechanical properties of the SiC; following laser irradiation, the fracture strength of the SiC was increased by as much as 50%, but after ion beam mixing, no strength increase was observed.High resolution cross-section transmission electron microscopy (X-TEM), scanning electron microscopy (SEM), and Rutherford backscattering techniques were used to characterize the extent of mixing between the Ni and the SiC as a result of the surface modification.
Read full abstract