Pregabalin is a widely prescribed drug for various neurological disorders, yet its effects on embryonic cortical neuron development when given to pregnant women remain inadequately explored. In this study, we employed advanced three-dimensional (3D) culturing and in-house developed high-throughput robotic 3D bioprinting technologies to evaluate their potential in neuropharmacology applications, using pregabalin as a model compound. Using a robotic 3D bioprinter and tetrameric IIZK peptide hydrogel as bioink, we created constructs with pregabalin-treated and untreated primary mouse embryonic cortical neurons. This setup allowed us to study the drug’s effects on cell viability, expression of neuronal markers, and neuron development. Our comparative analysis between 2D and 3D peptide-based cell culture models revealed that at a therapeutic concentration of 10 μM, pregabalin does not affect neuronal viability or the morphogenesis of cortical neurons. However, it significantly alters adenosine triphosphate (ATP) release, suggesting potential disruptions in mitochondrial function. Moreover, gene expression analysis of key genes involved in the development of the forebrain and the differentiation and maturation of neurons revealed significant alterations, including the downregulation of Dlx2, Nhlh2, Otp, and Gad67. These findings, together with observed alterations in neuronal activity and oscillations, emphasize the complex impact of pregabalin on neuronal development and function. They highlight the necessity for comprehensive clinical evaluations of its use during pregnancy. Furthermore, our research demonstrates the feasibility and value of integrating 3D cultures with high-throughput 3D bioprinting in neuropharmacology, opening new avenues for investigating drug effects on neuronal development and function, and contributing to safer clinical practices.
Read full abstract