The understanding of schwannoma tumorigenesis has been reshaped by the recent identification of SH3PXD2A::HTRA1 fusion in 10% of intracranial/spinal schwannomas. Nonetheless, pathologic features of schwannomas harboring this fusion, as well as its prevalence outside intracranial/spinal locations, have not been characterized. We screened 215 consecutive schwannomas for their clinicopathologic characteristics and fusion status using reverse-transcriptase polymerase chain reaction (RT-PCR). Among 29 (13.5%) fusion-positive schwannomas, the most prevalent location was peripheral somatic tissue (30.7%, 19/62), followed by spinal/paraspinal (18.4%, 7/38), body cavity/deep structures (10%, 2/20), intracranial (1.3%, 1/75), and viscera (0/13). All 8 cellular, 4 microcystic/reticular, and 3 epithelioid schwannomas were fusion-negative, as were 41/42 nonschwannomatous peripheral nerve sheath tumors. Remarkably, a distinct ‘serpentine’ palisading pattern, comprising ovoid/plump cells shorter than usual schwannian cells in a hyalinized stroma, was identified in most fusion-positive cases and the schwannomatous component of the only fusion-positive malignant peripheral nerve sheath tumor. To validate this finding, 60 additional cases were collected, including 36 with (≥10% arbitrarily) and 24 without appreciable serpentine histology, of which 29 (80.6%) and 2 (8.3%) harbored the fusion, respectively. With percentages of ‘serpentine’ areas scored, 10% was determined as the optimal practical cut-off to predict the fusion status (sensitivity, 0.950; specificity, 0.943). Fusion positivity was significantly associated with serpentine histology, smaller tumors, younger patients, and peripheral somatic tissue, while multivariate logistic linear regression analysis only identified serpentine histology and location as independent fusion-predicting factors. RNA in situ hybridization successfully detected the fusion junction, highly concordant with RT-PCR results. Gene expression profiling on 18 schwannomas demonstrated segregation largely consistent with fusion status. Fusion-positive cases expressed significantly higher HTRA1 mRNA abundance, perhaps exploitable as a biomarker. In summary, we systematically characterize a series of 60 SH3PXD2A::HTRA1 fusion-positive schwannomas, showing their distinctive morphology and location-specific prevalence for the first time.
Read full abstract