Chromatin alterations brought by histone variants and modifications potentially regulate gene transcription from tumor initiation to progression. Histone H3.3 variant is one such epigenetic player important for disease progression and development. Though many studies have implicated H3.3 role in cancer progression and metastasis, its regulation, importance of specific modifications and chaperones have been not understood yet. We report DNA methylation mediated downregulation of histone H3 variant H3.3 in HCC and a concomitant increase in the level of the H3.2 variant. The loss of H3.3 in cancer tissues correlates with a decrease in the histone modifications associated with active transcription like H3K9/K14/K27Ac and H3K4Me3. The ectopic overexpression of H3.3 and H3.2 did not affect global PTMs and cell physiology, probably owing to the deregulation of specific histone chaperones CAF-1 (for H3.2) and HIRA (for H3.3) as observed in HCC tissues. Notably, knockdown of P150, a subunit of CAF-1 leads to a cell cycle arrest in S-phase in a neoplastic rat liver cell line, possibly due to the decrease in the histone levels necessary for DNA packaging. Remarkably, modulation of H3.3 in pre-neoplastic rat liver cells lead to an increase in cell proliferation and a decreased transcription of tumor suppressor genes, recapitulating the tumor cell phenotype. Our data suggests, inhibition of DNA methylation and histone deacetylation leads to the restoration of histone H3 variant expression in tumor cells.
Read full abstract