Disassembly of the yeast V-ATPase into cytosolic V(1) and membrane V(0) sectors inactivates MgATPase activity of the V(1)-ATPase. This inactivation requires the V(1) H subunit (Parra, K. J., Keenan, K. L., and Kane, P. M. (2000) J. Biol. Chem. 275, 21761-21767), but its mechanism is not fully understood. The H subunit has two domains. Interactions of each domain with V(1) and V(0) subunits were identified by two-hybrid assay. The B subunit of the V(1) catalytic headgroup interacted with the H subunit N-terminal domain (H-NT), and the C-terminal domain (H-CT) interacted with V(1) subunits B, E (peripheral stalk), and D (central stalk), and the cytosolic N-terminal domain of V(0) subunit Vph1p. V(1)-ATPase complexes from yeast expressing H-NT are partially inhibited, exhibiting 26% the MgATPase activity of complexes with no H subunit. The H-CT domain does not copurify with V(1) when expressed in yeast, but the bacterially expressed and purified H-CT domain inhibits MgATPase activity in V(1) lacking H almost as well as the full-length H subunit. Binding of full-length H subunit to V(1) was more stable than binding of either H-NT or H-CT, suggesting that both domains contribute to binding and inhibition. Intact H and H-CT can bind to the expressed N-terminal domain of Vph1p, but this fragment of Vph1p does not bind to V(1) complexes containing subunit H. We propose that upon disassembly, the H subunit undergoes a conformational change that inhibits V(1)-ATPase activity and precludes V(0) interactions.
Read full abstract