The rising prevalence of invasive fungal infections and the emergence of antifungal resistance highlight the urgent need for new antifungal medications. Antifungal peptides have emerged as promising alternatives to traditional antimicrobial agents. The identification of natural or synthetic antifungal peptides is crucial for advancing antifungal drug development. Typically, the availability of antifungal samples is limited, and significant sequence diversity exists among antifungal peptides, posing challenges for high-throughput screening. To address the identification challenge of antifungal peptides with limited sample availability, this study introduces the Cycle ESM method. Initially, the method utilises the ESM protein language model to generate additional data on antifungal peptides, serving as a data augmentation technique to enhance model training effectiveness. Subsequently, the ESM is employed in conjunction with a textCNN model to construct a classifier for peptide prediction, with a comprehensive exploration of peptide characteristics to improve prediction accuracy. Experimental results demonstrate that the performance of the Cycle ESM method surpasses that of existing methods across three distinct antifungal peptide datasets. This study presents a novel approach to antifungal peptide prediction and offers innovative insights for addressing classification problems with limited sample availability.
Read full abstract