We study the one-dimensional extended Hubbard model with alternating size of the hopping integrals using the density-matrix renormalization group method. We calculate the spin gap, the Tomonaga-Luttinger parameter, and the charge-density-wave order parameter for various dimerizations, interaction strengths, and band fillings. At half band-filling the spin and charge excitations are gapped but these gaps disappear for infinitesimal hole doping. At quarter filling, the umklapp scattering in the half-filled lower Peierls band generates a gap for the charge excitations but the gapless spin excitations can be described in terms of an effective antiferromagnetic Heisenberg model. Beyond a critical strength for the nearest-neighbor interaction, the dimerized extended Hubbard model at quarter filling develops a charge-density-wave ground state. The dimerization and the nearest-neighbor Coulomb interaction strongly reduce the Tomonaga-Luttinger parameter from its value for the bare Hubbard model. We discuss the relevance of our findings for the Bechgaard salts.
Read full abstract