The flow of erythrocytes in parafoveal capillaries was imaged in the living human eye with an adaptive optics near-confocal ophthalmoscope at a frame rate of 800 Hz with a low coherence near-infrared (NIR) light source. Spatiotemporal traces of the erythrocyte movement were extracted from consecutive images. Erythrocyte velocity was measured using custom software based on the Radon transform. The impact of imaging speed on velocity measurement was estimated using images of frame rates of 200, 400, and 800 Hz. The NIR light allowed for long imaging periods without visually stimulating the retina and disturbing the natural rheological state. High speed near-confocal imaging enabled direct and accurate measurement of erythrocyte velocity, and revealed a distinctively cardiac-dependent pulsatile velocity waveform of the erythrocyte flow in retinal capillaries, disclosed the impact of the leukocytes on erythrocyte motion, and provided new metrics for precise assessment of erythrocyte movement. The approach may facilitate new investigations on the pathophysiology of retinal microcirculation with applications for ocular and systemic diseases.
Read full abstract