The solid-electrolyte interphase (SEI) is a key element in anode-electrolyte interactions and ultimately contributes to improving the lifespan and fast-charging capability of lithium-ion batteries. The conventional additive vinyl carbonate (VC) generates spatially dense and rigid poly VC species that may not ensure fast Li+ transport across the SEI on the anode. Here, a synthetic additive called isosorbide 2,5-dimethanesulfonate (ISDMS) with a polar oxygen-rich motif is reported that can competitively coordinate with Li+ ions and allow the entrance of PF6 - anions into the core solvation structure. The existence of ISDMS and PF6 - in the core solvation structure along with Li+ ions enables the movement of anions toward the anode during the first charge, leading to a significant contribution of ISDMS and LiPF6 to SEI formation. ISDMS leads to the creation of ionically conductive and electrochemically stable SEI that can elevate the fast-charging performance and increase the lifespan of LiNi0.8Co0.1Mn0.1O2 (NCM811)/graphite full cells. Additionally, a sulfur-rich cathode-electrolyte interface with a high stability under elevated-temperature and high-voltage conditions is constructed through the sacrificial oxidation of ISDMS, thus concomitantly improving the stability of the electrolyte and the NCM811 cathode in a full cell with a charge voltage cut-off of 4.4V.
Read full abstract