Nitrogen-replete cells of Phaeodactylum tricomutum Bohlin assimilated ammonium and the amino acid l-arginine simultaneously. Arginine was taken up at rates expected to supply at least 30% of the cells' requirement for nitrogen; arginme-carbon mainly entered protein but, when uptake was in darkness, ≈40% was respired. Cells grown in a 12:12 h light:dark cycle with ammonium as the sole nitrogen source took up ammonium throughout the growth cycle, whereas cells grown with the addition of arginine took up little ammonium during the dark phase. The uptake of ammonium over the course of the cycle was reduced by 30% when arginine was present. Cells grown with arginine as the sole nitrogen source took up the amino acid at the rate required for growth. In contrast, cells grown on ammonium, while growing at the same rate as those on arginine, assimilated nitrogen at twice the rate. Cells grown with both sources of nitrogen present, took up arginine at the same rate as before, but more of the arginine-carbon was respired (60% as compared with 40% when ammonium was absent). The uptake of ammonium was reduced by 30%, but the total nitrogen assimilation again exceeded immediate requirements. A high uptake rate of arginine was indicative of cells assimilating ammonium only; a low uptake rate of ammonium during the dark phase of growth was indicative of cells assimilating arginine. It is not known whether the findings with P. tricomutum are applicable to other marine phytoplankton. If they are, arginine may be of greater significance as a natural source of nitrogen for phytoplankton than is generally thought.
Read full abstract