Small- and medium-sized reservoirs significantly alter natural flood processes, making it essential to understand their impact on runoff for effective water resource management. However, the lack of measured data for most small reservoirs poses challenges for accurately simulating their behavior. This study proposes a novel method that utilizes readily available satellite observation data, integrating hydraulic, hydrological, and mathematical formulas to derive outflow coefficients. Based on the Grid-XinAnJiang (GXAJ) model, the enhanced GXAJ-R model accounts for the storage and release effects of ungauged reservoirs and is applied to the Tunxi watershed. Results show that the original GXAJ model achieved a stable performance with an average NSE of 0.88 during calibration, while the NSE values of the GXAJ and GXAJ-R models during validation ranged from 0.78 to 0.97 and 0.85 to 0.99, respectively, with an average improvement of 0.03 in the GXAJ-R model. This enhanced model significantly improves peak flow simulation accuracy, reduces relative flood peak error by approximately 10%, and replicates the flood flow process with higher fidelity. Additionally, the area–volume model derived from classified small-scale data demonstrates high accuracy and reliability, with correlation coefficients above 0.8, making it applicable to other ungauged reservoirs. The OTSU-NDWI method, which improves the NDWI, effectively enhances the accuracy of water body extraction from remote sensing, achieving overall accuracy and kappa coefficient values exceeding 0.8 and 0.6, respectively. This study highlights the potential of integrating satellite data with hydrological models to enhance the understanding of reservoir behavior in data-scarce regions. It also suggests the possibility of broader applications in similarly ungauged basins, providing valuable tools for flood management and risk assessment.
Read full abstract