The raw materials of cement contain radioactive elements that come from natural sources. Members of the decay chains of uranium, thorium, and potassium radioisotope 40K are the primary sources of this radioactivity. The natural radionuclide concentration levels in cement differ greatly depending on different geographic areas. To estimate the radionuclides concentration in cement specimens from twelve diverse Pakistani companies, gamma-ray spectroscopy analysis was used in the study. 226Ra, 232Th, and 40K had activity concentration levels ranging from 18.08 to 43.18 Bq/kg, 16.73 to 23.53 Bq/kg, and 14.24 to 315.22 Bq/kg, respectively. The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) threshold for the 226Ra was surpassed by five of the studied samples. The indoor and outdoor dose rates as well as different radiological health hazard indices were also examined. The Indoor Absorbed Dosage (Din) for some of the samples exceeded the permissible limit. These samples also had a high Indoor Effective Lifetime Cancer Risk (ELCR) factor, which makes them unsafe for interior construction purposes. The outdoor dosages as well as the hazard indices were well within the permitted ranges. The outdoor ELCR factor is low for all the cement brands, which makes them safe for exterior construction purposes. The findings were compared with published data from other countries around the globe. Finally, a thorough statistical analysis was performed and Pearson’s Correlation Coefficient (r) exhibited a very strong correlation between the different outdoor and indoor radiological health hazard indices.
Read full abstract