A series of mesoporous molecular sieves, MCM-41 with different Si/Al molar ratios, were synthesized by hydrothermal method. The influence of aluminum content on the properties and pore structure of MCM-41 molecular sieves was investigated. The supported Ni-Mo catalysts with MCM-41 and γ-Al2O3 as supports were synthesized by impregnating with Ni-Mo-P solution. The activity of the catalysts was characterized by hydrogenation of naphthalene. The influence of Si/Al ratio of MCM-41 on hydrogenation activity of the catalysts was investigated. The results indicated that the relative crystallinity of MCM-41 decreases with the increase of aluminum content in the molecular sieves; however, the hydrogenation activity of the catalysts, especially the ring-opening activity, increases with the increase of aluminum content. The synergistic effect for hydrogenation of naphthalene was found by mixing MCM-41 and HY molecular sieves. At 360°C the catalysts with HY and MCM-41 mixture as supports had higher activity. The reaction network for hydrogenation of naphthalene includes two parallel pathways; naphthalene was hydrogenated to tetralin, then the isomerization and ring-opening of tetralin occurred, or tetralin was further hydrogenated to decalin, followed by the isomerization and ring-opening of decalin.
Read full abstract