Methods To prepare the anti-PCSK9 vaccine, a peptide construct called Immunogenic Fused PCSK9-Tetanus (IFPT) was linked to the surface of nanoliposome carriers. Healthy rats received four subcutaneous injections of the vaccine at biweekly intervals. Two weeks after the last vaccination, anti-PCSK9 antibody titers, PCSK9 targeting, and inhibition of PCSK9–low-density lipoprotein receptor (LDLR) interaction were evaluated. After verification of antibody generation, the immunized rats were intraperitoneally treated with a single dose (45 mg/kg) of streptozotocin (STZ) to induce diabetes mellitus. The levels of fasting blood glucose (FBG) were measured, and the oral glucose tolerance test (OGTT) as well as the insulin tolerance test (ITT) were carried out to assess glycemic status. At the end of the study, the total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglyceride, and high-density lipoprotein cholesterol concentrations were assayed. Histopathology examination of the liver and pancreas was also performed using the hematoxylin-eosin staining method. Results The prepared nanoliposomal vaccine could strongly induce anti-PCSK9 antibodies in the vaccinated rats. Within one week following the STZ injection, the FBG level was lower in the vaccinated group vs. diabetic control group (49% (−171.7 ± 35 mg/dL, p < 0.001)). In the OGTT, the injected rats showed improved glucose tolerance as reflected by the reduction of blood glucose levels over 180 min, compared with the diabetic controls. Moreover, the ITT demonstrated that, after the insulin injection, blood glucose concentration declined by 49.3% in the vaccinated group vs. diabetic control group. Expectedly, the vaccinated rats exhibited lower (-26.65%, p = 0.03) plasma LDL-C levels compared with the diabetic controls. Histopathology examination of pancreas tissue demonstrated that the pancreatic islets of the vaccinated rats had a slight decline in the population of β-cells and few α-cells. Normal liver histology was also observed in the vaccinated rats. Conclusion PCSK9 inhibition through the liposomal IFPT vaccine can improve the glucose and insulin tolerance impairments as well as the lipid profile in diabetes.
Read full abstract