In this work, the scattering mechanism by nano-patterned sapphire substrate (NPSS) for flip-chip AlGaN-based deep ultraviolet light-emitting diodes (DUV LEDs) has been investigated systematically via three-dimensional finite-difference time-domain (3D FDTD) method. It is found that for the conventional DUV LED with a thick p-GaN layer, the NPSS structure can enhance the light extraction efficiency (LEE) for the transverse magnetic (TM)-polarized light because the TM-polarized light with large incident angles can be scattered into escape cones. However, the LEE for the transverse electric (TE)-polarized light is suppressed by NPSS structure because NPSS structure scatters some TE-polarized light out of the escape cones. Moreover, the highly absorptive p-GaN layer also seriously restricts the scattering efficiency of NPSS structure. Therefore, to reduce the optical absorption, meshed p-GaN structure is strongly proposed to greatly enhance the LEEs for both TM- and TE-polarized light of DUV LEDs grown on NPSS. Compared to the DUV LED with only NPSS structure and that with only meshed p-GaN layer, the LEE for the TE-polarized (TM-polarized) light for DUV LEDs with the combination of NPSS structure and meshed p-GaN structure can be enhanced by 124% (5 times) and 112% (4 times), respectively.
Read full abstract