In recent days, a study of the intrusion detection system collecting and analyzing network data, packet or logs, has been actively performed to response the network threats in computer security fields. In particular, Bayesian network has advantage of the inference functionality which can infer with only some of provided data, so studies of the intrusion system based on Bayesian network have been conducted in the prior. However, there were some limitations to calculate high detection performance because it didn't consider the problems as like complexity of the relation among network packets or continuos input data processing. Therefore, in this paper we proposed two methodologies based on K-menas clustering to improve detection rate by reforming the problems of prior models. At first, it can be improved by sophisticatedly setting interval range of nodes based on K-means clustering. And for the second, it can be improved by calculating robust CPT through applying weighted-leaning based on K-means clustering, too. We conducted the experiments to prove performance of our proposed methodologies by comparing K_WTAN_EM applied to proposed two methodologies with prior models. As the results of experiment, the detection rate of proposed model is higher about 7.78% than existing NBN(Naive Bayesian Network) IDS model, and is higher about 5.24% than TAN(Tree Augmented Bayesian Network) IDS mode and then we could prove excellence our proposing ideas.
Read full abstract