A tunable diode laser sensor with a detection bandwidth of 40 kHz is developed for measuring the time-varying gas temperature of CO2 during the evaporation of shock-heated hydrocarbon fuel aerosol. Normalized wavelength-modulation spectroscopy with second-harmonic detection (WMS-2f/1f) is used to probe R(28) and P(70) transitions in the ν1 + ν3 combination band of CO2 near 2.7 µm. The fixed-center-wavelength WMS sensor was first validated in a shock tube with non-reactive CO2/Ar gas mixtures, yielding an accuracy of better than 1.5% over the entire range of 650–1500 K. The sensor was then evaluated in a well-controlled aerosol flow cell, demonstrating the potential for precise gas temperature measurement even when aerosol scattering attenuates more than 99% of the incident light. Applications of this sensor for accurate temperature measurement of evaporating n-dodecane aerosol were then performed in an aerosol shock tube. The time-resolved temperature variation due to the evaporation of fuel droplets was accurately captured without using an off-resonant laser to account for the extinction from droplet scattering. Measured temperatures confirmed the accuracy of the gasdynamic model used to calculate the pre- and post-evaporation shock conditions, as needed in shock tube studies on combustion chemistry.
Read full abstract