AbstractWe demonstrate a method that involves melt blending of polycarbonate (PC) and melt‐blended acrylonitrile butadiene styrene (ABS) with multiwall carbon nanotubes (MWCNTs) to prepare electrically conducting PC/MWCNT nanocomposites at significantly low MWCNT loading. The partial solubility of ABS in PC led to a selective dispersion of the MWCNTs in the ABS phase after melt‐blending PC and ABS. Thus, a sudden rise in electrical conductivity (∼108 orders of magnitude) of the nanocomposites was found at 0.328 vol% of MWCNT, which was explained in terms of double percolation phenomena. By optimizing the ratio of PC and the ABS–MWCNT mixture, an electrical conductivity of 5.58 × 10−5 and 7.23 × 10−3 S cm−1 was achieved in the nanocomposites with MWCNT loading as low as 0.458 and 1.188 vol%, respectively. Transmission electron microscopy revealed a good dispersion and distribution of the MWCNTs in the ABS phase, leading to the formation of continuous MWCNT network structure throughout the matrix even at very low MWCNT loading. Storage modulus and thermal stability of the PC were also increased by the presence of a small amount of MWCNTs in the nanocomposites.POLYM. COMPOS., 2013. © 2013 Society of Plastics Engineers
Read full abstract