This paper presents an integrated approach for joint decision-making in reliable product design and resilient supply chain network design within a two-echelon capacitated network. Our methodology simultaneously addresses two crucial decisions faced by manufacturing industry by integrating the design processes of modular products and their supply chain networks, allowing for multiple production facilities and product variants. Through redundancy allocation, we optimize product reliability within production facilities while considering component sourcing from multiple suppliers. Our approach employs three resilience strategies—multi-sourcing, supplier fortification, and backup supplier contracting—to enhance supply chain resilience against disruptions. A case study solved using a genetic algorithm demonstrates the effectiveness of different resilience strategy combinations in achieving various levels of production resilience. This research offers insights into integrated decision-making for enhancing product reliability and supply chain resilience, thereby providing valuable guidance for industry practitioners. Furthermore, the sensitivity analysis highlights the framework’s capability to minimize total costs by prioritizing resilient designs and strategically investing in resilience strategies as costs of production shortage increase. This analysis underscores the interconnected nature of product and supply chain network design decisions in mitigating disruptions and enhancing production resilience.
Read full abstract