A crowded vegetable market serves as a mass gathering, posing a potential risk for infection transmission. In this study, we isolated a multidrug-resistant Acinetobacter baumannii strain, VRL-M19, from the air of such a market and conducted comparative genomics and phenotypic characterization. Antimicrobial susceptibility testing, genome sequencing using Illumina HiSeq X10, and pan-genome analysis with 788 clinical isolates identified core, accessory, and unique drug-resistant determinants. Mutational analysis of drug-resistance genes, virulence factor annotation, in vitro pathogenicity assessment, subsystem analysis, Multilocus sequence typing, and whole genome phylogenetic analysis were performed. VRL-M19 exhibited multidrug resistance with 69 determinants, and analysis across 788 clinical isolates and 350 Indian isolates revealed more accessory genes (52 out of 69) in the Indian isolates. Multiple mutations were observed in drug target modification genes, and the strain was identified as a moderate biofilm-former with 55 virulence factors. Whole genome phylogenetics indicated a close relationship between VRL-M19 and clinical A. baumannii strains. In conclusion, our comprehensive study suggests that VRL-M19 is a multidrug-resistant, potential pathogen with biofilm-forming capabilities, closely associated with clinical A. baumannii strains.
Read full abstract