This paper introduced the method of multidisciplinary design optimization based on genetic algorithm. The basic structure and new auxiliary braking mechanism of permanent magnet retarder was analyzed. The influences of magnetic field parameters, structural design parameters, rotor parameters and permanent magnet temperature parameters on the behaviors performance of the permanent magnet retarder were discussed. The conceptual model of permanent magnet retarder was developed to maximize the brake torque of the permanent magnet retarder. The design variables included the radial width and the axis length of permanent magnet, the number of permanent magnet, the radius of rotor, the thickness of rotor, and the air gas. The constraint conditions included permitting temperature of rotor, saturation magnetic flux density of magnet material, and relation of structural geometry. The results of design optimization variables were obtained by applying genetic algorithm. The multidisciplinary design optimization in this paper is an effective method for the global design optimization of the permanent magnet retarder.
Read full abstract