Due to the information non-independence of attributes, combined with a complex and changeable environment, the analysis of risks faces great difficulties. In view of this problem, this paper proposes a new three-way decision-making (3WD) method, combined with prospect theory and a non-additive measure, to cope with multi-source and incomplete risk information systems. Prospect theory improves the loss function of the original 3WD model, and the combination of non-additive measurement and probability measurement provides a new perspective to understand the meaning of decision-making, which could measure the relative degree by considering expert knowledge and objective data. The theoretical basis and framework of this model are illustrated, and this model is applied to a real in-service aviation equipment structures risk evaluation problem involving multiple incomplete risk information sources. When the simulation analysis is carried out, the results show that the availability of this method is verified. This method can also evaluate and rank key risk factors in equipment structures, which provides a reliable basis for decisions in aviation safety management.
Read full abstract