An attractive approach of increasing functionality of solid surfaces is to create hierarchical multiscale morphology by attaching tailored carpet-like arrays of Carbon nanotubes (CNT) on them. Such surfaces offer fractal morphology along with unprecedented increase in specific surface areas, and significantly boost the potency of porous materials used in surface-active applications. However, full utilization of these structures will require intimate interaction between the solid surface and its environmental fluid. CNT arrays tend to be hydrophobic, which limit their effectiveness in aqueous environments. In this research, we investigated two different surface modifications methods to induce hydrophilic property to CNT nano-carpets on graphitic substrates: dry oxygen plasma treatment and wet sol–gel oxide coating. Structure, morphology, composition and chemistry of these multiscale surfaces have been related to wettability and water flow properties. Plasma oxygen treatments did not alter the surface morphology, but induced temporary wettability, that could be reversed by heat treatment. On the other hand, sol–gel treatment permanently coated the nanotubes with a strongly bonded layer of amorphous SiO2. This coating imparts permanent alterations in surface chemistry, contact angle, wettability and water flow. Porous carbon foams were coated with CNT arrays and their water permeability measured before and after sol–gel silica coating. The hydrophilic coating was seen to increase flow rate and reduce pressure build-up. These results have important implications on all devices that utilize surface activity of porous solids, such as catalytic membranes, antimicrobial filters, and microfluidic sensors.
Read full abstract