In this paper, we present a novel consensus-based zeroth-order algorithm tailored for non-convex multiplayer games. The proposed method leverages a metaheuristic approach using concepts from swarm intelligence to reliably identify global Nash equilibria. We utilize a group of interacting particles, each agreeing on a specific consensus point, asymptotically converging to the corresponding optimal strategy. This paradigm permits a passage to the mean-field limit, allowing us to establish convergence guarantees under appropriate assumptions regarding initialization and objective functions. Finally, we conduct a series of numerical experiments to unveil the dependency of the proposed method on its parameters and apply it to solve a nonlinear Cournot oligopoly game involving multiple goods.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
2411 Articles
Published in last 50 years
Related Topics
Articles published on Multiplayer Games
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
2355 Search results
Sort by Recency