One of the essential components for the dynamic provisioning of lightpaths across multiple domains is the Routing and Wavelength Assignment (RWA) strategy adopted. The consolidation that path-vector protocols have had in practice, has motivated the optical extension to BGP (OBGP). We claim, however, that a routing model mostly centered on the exchange of reachability information–like the one we have today with BGP or the one offered by OBGP–will not be sufficient for multi-domain optical networks. Routing domains must be able to exchange both reachability as well as aggregated Path-State Information (PSI). Understanding that this is a missing piece in the routing models provided by BGP and OBGP is easy nowadays, but contributing with solutions capable of highly improving the performance of a path-vector without impacting on key aspects of the protocol–fundamentally, its scalability, its convergence properties, and the number of routing messages exchanged between domains–is a challenging task. In this paper we propose OBGP +, which is a very simple extension of a path-vector protocol supporting the computation and advertisement of PSI between optical domains. The PSI that we propose to use is highly condensed in the form of a single integer value. In order to avoid the typical increase in the number of routing messages associated with the update of PSI, we propose to piggy-back the updates in non-dummy Keepalive messages exchanged between OBGP+ neighbors. Extensive simulations reveal that, despite its simplicity: (i) OBGP+ is able to drastically reduce the blocking experienced with a path-vector protocol like OBGP; (ii) OBGP+ needs much less number of routing messages than OBGP to achieve such performance; and (iii) the convergence and restoration features of OBGP+ are also better than those of OBGP, which is particularly important for connections that lack a protection path.
Read full abstract