The dissociation energy curves of low-lying spin-mixed states for Group 4 hydrides, TiH, ZrH, and HfH, have been calculated using both effective core potential and all-electron approaches. A comprehensive set of theoretical results including the dissociation energies, equilibrium distances, harmonic frequencies, anharmonicities, rotational constants, and dipole moments are reported for these molecules. We present results for both ground and a few excited states, filling a considerable gap in available data for these molecules. Absorption spectra are also predicted on the basis of the results. The present study uses three methods, all based on the multiconfigurational self-consistent field (MCSCF) method, augmented by second-order configuration interaction (SOCI), with either an effective core potential basis set (SBKJC) or a double-ζ basis set (MIDI): (i) MCSCF+SOCI/SBKJC(f,p) with a one-electron approximation using effective nuclear charges, (ii) MCSCF+SOCI/MIDI(3p,3p) with the full Breit−Pauli Hamiltonian, and (iii) MCSCF +SOCI/MIDI(3p,3p) with the relativistic elimination of the small component scheme and full Breit−Pauli Hamiltonian. The results are compared with previous theoretical studies and available experimental data reported previously. Good agreement is obtained between the results obtained when the first and third methods are used.
Read full abstract