Carbon and nitrogen play a fundamental role in the architecture of fungal biofilm morphology and metabolite production. However, the regulatory mechanism of nutrients remains to be fully understood. In this study, the formation of Beauveria bassiana biofilm and the production of (R)-2-(4-Hydroxyphenoxy)propanoic acid in two media with different carbon and nitrogen sources (GY: Glucose as a carbon source and yeast extract as a nitrogen source, MT: Mannitol as a carbon source and tryptone as a nitrogen source) were compared. R-HPPA production increased 2.85-fold in media MT than in media GY. Different fungal biofilm morphology and architecture were discovered in media GY and MT. Comparative transcriptomics revealed up-regulation of mitogen-activated protein kinase (MAPK) pathway and polysaccharides degradation genes affecting mycelial morphology and polysaccharides yield of the extracellular polymeric substances (EPS) in MT medium biofilms. Upregulation of genes related to NADH synthesis (carbon metabolism, amino acid metabolism, glutamate cycle) causes NADH accumulation and triggers an increase in R-HPPA production. These data provide a valuable basis for future studies on regulating fungal biofilm morphology and improving the production of high-value compounds.
Read full abstract7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access