The aim of the present study was to investigate the ameliorative potential of parsley (Petroselinum crispum) leaf essential oil (PO) against the detrimental effects of carbon tetrachloride (CCl4) on the thyroid gland and testes of mice. Twenty-four adult male mice were divided into four groups and treated for 4 weeks. The 1st control group received 3 mL/kg olive oil intraperitoneally, twice a week followed by 0.5 mL/kg saline intragastrically daily. The 2nd CCl4 group received CCl4 (3 mL/kg intraperitoneally, twice a week). The 3rd PO group received PO (0.5 mL/kg intragastrically daily), while the 4th CCl4+PO group received CCl4 coadministrated with PO at the aforementioned doses. CCl4 group recorded significant (p < 0.05) reduction in the activities of antioxidant enzyme catalase (CAT) and superoxide dismutase (SOD) and significant (p < 0.05) increase in the lipid peroxidation end product's level malondialdehyde (MDA) in the testes and thyroid glands. Meanwhile, serum levels of testosterone, follicle-stimulating hormone (FSH), luteinizing hormone (LH), and thyroid hormones (thyroid-stimulating hormone (TSH), total triiodothyronine (T3), free triiodothyronine (fT3), total thyroxine (T4), and free thyroxine (fT4)) significantly decreased. Also, histopathologically, the testicular tissue showed hypospermatogenesis within irregular-shaped seminiferous tubules with prominent edema in the interstitial spaces confirming the aforementioned biochemical alterations. Treatment with PO significantly reduced the testicular and thyroid oxidative stress (p < 0.05) and elevated the testosterone (73.47%), FSH (92.11%), LH (33.33%), T3 (23.47%), fT3 (39.13%), T4 (27.91%), and fT4 (75%) as compared to that of CCl4-treated group corresponding values. The PO GC/MS analysis indicated bioactive monoterpenes (major component is 1,3,8-mentha triene 34.48%) and phenylpropenes (major component is myristicin 21.04%). Results suggested the ameliorative effect of PO against CCl4-induced hypogonadism in mice by suppressing oxidative stress and maintaining thyroid gland function.
Read full abstract