The effective manipulation of excitons is important for the realization of exciton-based devices and circuits, and doping is considered a good strategy to achieve this. While studies have shown that 2D semiconductors are ideal for excitonic devices, preparation of homogenous substitutional foreign-atom-doped 2D crystals is still difficult. Here we report the preparation of homogenous monolayer Sb-doped MoS2 single crystals via a facile chemical vapor deposition method. A and B excitons are observed in the Sb-doped MoS2 monolayer by reflection magnetic circular dichroism spectrum measurements. More important, compared with monolayer MoS2, the peak positions of two excitons show obvious shifts. Meanwhile, the degeneration of A exciton is also observed in the monolayer Sb-doped MoS2 crystal using photoluminescence spectroscopy, which is ascribed to the impurity energy levels within the band-gap, confirmed by density function theory. Our study opens a door to developing the doping of 2D layered transition metal dichalcogenides with group-V dopants, which is helpful for the fundamental study of the physical and chemical properties of transition metal dichalcogenides.
Read full abstract