Korean oak wilt disease associated with Dryadomyces quercus-mongolicae recently emerged as a major tree disease in South Korea. A comprehensive transcriptome analysis is presented for D. quercus-mongolicae grown in vitro on three different culture media, identifying nearly 7,000 expressed transcripts. Most transcripts are associated with proteins essential for fungal survival and growth. The 40S ribosomal protein S25, ceramide very long chain fatty acid hydroxylase, Epl1 protein, and ADP/ATP translocase are particularly important due to their critical roles in the metabolism and environmental adaptation of fungi. Gene ontology analyses revealed that 39.4%, 61.2%, and 43.3% of transcripts were successfully annotated to biological process, molecular functions, and cellular component aspects, respectively. Furthermore, key metabolic pathways were elucidated, including sphingolipid metabolism, L-tryptophan biosynthesis, and glycolysis, which provide important information on physiological functioning of D. quercus-mongolicae. Overall, these findings provide key information on fundamental biological mechanisms of D. quercus-mongolicae.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Journal finder
AI-powered journal recommender
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
88 Articles
Published in last 50 years
Articles published on Mortality In South Korea
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
79 Search results
Sort by Recency