Water pollution due to textile industry effluents is a global concern that warrants versatile research solutions for degrading them, and for a sustainable environment. In the present work, by using the imperative role of nanotechnology, a facile one-pot synthesis has been devised to generate κ-carrageenan capped silver nanocatalyst (CSNC), and was immobilized on 2D bentonite (BT) sheets to generate nanocatalytic platform (BTCSNC) for the degradation of anionic azo dyes. The nanocomposite(s) were physicochemically characterized using UV–Vis, DLS, TEM, FESEM, PXRD, ATR-FTIR, TGA, BET and XPS etc., to obtain insights into the nanocomposite composition, structure, stability, morphology and mechanism of interaction. The obtained CNSC are monodispersed, spherical with a size of 4 ± 2 nm, and were stabilized by the functional groups (-OH, COO‾, and SO3‾) of κ-Crg. The broadening of peak corresponding to basal plane (001) of BT montmorillonite in PXRD spectra established its exfoliation upon addition of CSNC. XPS and ATR-FTIR data evidenced the absence of covalent interactions between CSNC and BT. The catalytic efficiency of CSNC and BTCSNC composites were compared for the degradation of methyl orange (MO) and congo red (CR). The reaction followed a pseudo first order kinetics, and immobilization of CSNC on BT resulted in a 3–4 fold enhancement in degradation rates. The rates achieved for the degradation kinetics are: MO degradation within 14 s (Ka 9.86 ± 2.00 min−1), and CR degradation within 120 s (Ka of 1.24 ± 0.13 min−1). Further, a degradation mechanism has been proposed by analyzing the products identified through LC-MS. The reusability studies of the BTCSNC evidenced the complete activity of the nanocatalytic platform for six cycles, and gravitational separation method for catalyst recycling. In a nutshell, the current study provided an environmentally friendly, sizable, and sustainable nano catalytic platform” for the remediation of industrial wastewater contaminated with hazardous azo dyes”.
Read full abstract