The three-dimensional balanced-steady-state-free-precession (3D bSSFP) whole-heart (WH) technique has long been used to depict cardiac morphology in congenital heart disease (CHD) but is prone to banding artifacts. The Relaxation Enhanced Angiography without Contrast and Triggering (REACT) sequence is an alternative method that is resistant to off-resonance effects. To evaluate cardiac structures and great vessels in CHD patients using 3D WH REACT sequence and compare it to 3D WH bSSFP sequence. This study was approved by the Institutional Review Board. Thirty CHD patients were prospectively enrolled. Contrast-to-noise ratio (CNR), image quality, and cross-sectional area (CSA) were analyzed. Categorical data were compared with a Wilcoxon signed-rank test and normally distributed variables with a t-test. Thirty patients (16 females) participated in this study (median age 17, range 5months to 52years). REACT showed higher CNR in all pulmonary veins (all P<0.05), while 3D bSSFP had higher CNR in the right ventricle (P<0.001) and right pulmonary artery, (P=0.04). Image quality favored 3D bSSFP in the right atrium and ventricle (both P<0.001), main pulmonary artery (P=0.02), and coronary arteries (left: P<0.001, right: P=0.01). REACT outperformed 3D bSSFP for the pulmonary veins (all P<0.05) from image quality perspective. CSA measurements were not significantly different between REACT and 3D bSSFP (all P≥0.05). The REACT method is associated with improved image quality and CNR for pulmonary veins, with CSA measurements concordant with 3D bSSFP in CHD patients, while bSSFP shows better performance for imaging cardiac chambers and coronary arteries.
Read full abstract