Fourier transform (FT) electron paramagnetic resonance (EPR) correlation spectroscopy usually requires broader excitation bandwidth than can be achieved by monochromatic rectangular pulses. Replacement of such pulses by frequency-swept pulses affords the correlation spectra, which, however, may not look the same as those that would be obtained with sufficiently broad-banded monochromatic rectangular pulses. This was recently observed for correlating nuclear frequencies to FT-EPR spectra by a three-pulse electron spin echo envelope modulation experiment. Here we analyze the origin of the additional cross peaks, whose position depends on the direction of the frequency sweep. We find that such peaks arise if coherence or polarization is transferred to an electron spin transition already before this transition is actually passed during the frequency sweep. This happens by excitation of a chain of transitions that connect levels of the source transition, where coherence resides before mixing, and the target transition, where it resides after mixing. The correlation spectra can be simplified by combining data from frequency up and down sweeps.
Read full abstract