Cellulose acetate (CA) receives notable attention as an environmentally friendly, biodegradable polymer from renewable, low-cost resources. CA polymers are believed to have a critical role in shaping a greener and more circular textile economy. However, the mechanical properties of CA fibers are among the lowest in terms of its tensile strength, poor wet strength, and low flexural strength. This study investigates the effect of biobased additives for antiplasticizing the mechanical performance and structure of CA fibers. At up to 5 % of CA, glucaric acid (GA) and its monoammonium salt were added to CA fibers. With 1.5 % GA additive, tensile modulus improved by 155%, tensile strength by 55 %, and CA flexibility according to knot to straight fiber tenacity ratios improved by 107 % when compared to neat CA fibers. Based on the results, green small molecule antiplasticizers do exist, but their performance improvements are observed at low percentages of loading.
Read full abstract