Acoustic emission (AE) technique can be successfully utilized for condition monitoring of various machining and industrial processes. To keep machines function at optimal levels, fault prognosis model to predict the remaining useful life (RUL) of machine components is required. This model is used to analyze the output signals of a machine whilst in operation and accordingly helps to set an early alarm tool that reduces the untimely replacement of components and the wasteful machine downtime. Recent improvements indicate the drive on the way towards incorporation of prognosis and diagnosis machine learning techniques in future machine health management systems. With this in mind, this work employs three supervised machine learning techniques; support vector machine regression, multilayer artificial neural network model and gaussian process regression, to correlate AE features with corresponding natural wear of slow speed bearings throughout series of laboratory experiments. Analysis of signal parameters such as signal intensity estimator and root mean square was undertaken to discriminate individual types of early damage. It was concluded that neural networks model with back propagation learning algorithm has an advantage over the other models in estimating the RUL for slow speed bearings if the proper network structure is chosen and sufficient data is provided.
Read full abstract