An abrupt tapered fiber In-Line Mach-Zehnder Interferometer sensor for simultaneous measurement of temperature and curvature is proposed and experimentally demonstrated. The sensor head is fabricated by arcing Corning SMF-28 using a commercial arc fusion splicer. The individual parameters discrimination was achieved by manipulating the unequal sensitivities of optical power to temperature and curvature obtained at two wavelengths within the sensing spectrum. The curvature and temperature sensitivities at λ1 (1537nm) and λ2 (1568.7nm) were found to be 11.8264dBm/m−1, 12.4885dBm/m−1 and 0.0829dBm/°C, 0.0833dBm/°C, respectively. The experimental results show unperturbed readings with rms deviation of ±0.1801m−1 and ±0.0826°C, for curvature and temperature measurements, respectively, through measurement of optical power response of the sensor. With this simultaneous sensing technique, the proposed sensor can be deployed for many field applications such as nondestructive structural health monitoring of civil infrastructure.
Read full abstract