Polymer brushes are typically densely grafted assemblies of polymer chains that are tethered via one end group to a solid substrate. Anchoring linear polymer chains via both end groups to a surface results in loop-type polymer brushes. Although loop polymer brushes have been shown to be able to outperform their linear, single-chain-end tethered analogues, for example, with respect to the prevention of biofouling or reducing friction, this brush architecture has received only relatively limited attention. Loop-type polymer brushes are mostly prepared following grafting-onto approaches using α,ω-heterobifunctional polymers. Grafting-from strategies, so far, have been rarely explored, but could further expand the range of accessible polymer molecular weights and brush grafting densities and allow the preparation of surface-attached polymer loops from a wider scope of monomers. This manuscript reports an alternative grafting-from strategy for the preparation of loop-type poly(methyl methacrylate) (PMMA) brush...
Read full abstract