Corn xylan is resistant to enzymatic hydrolysis due to its complex structure. We characterized PsXyn5A, an enzyme highly active for corn xylan, isolated from Paenibacillus sp. H2C. PsXyn5A is a modular xylanase with a catalytic domain belonging to the glycoside hydrolase family 5 subfamily 35 (GH5_35) and a carbohydrate-binding module family 13 (CBM13) domain. The substrate recognition mechanism of GH5_35 xylanase has not been reported. Analysis of the hydrolysate from rye arabinoxylan (RAX) has shown that the GH5_35 catalytic domain of PsXyn5A recognizes an arabinofuranosyl (Araf) side residue and cleaves the reducing terminal side of Araf-linked xylopyranose. This cleavage specificity is the same as reported for the GH5_34 xylanase from Hungateiclostridium thermocellum (HtXyl5A). Unlike HtXyl5A, PsXyn5A produced Araf-xylopyranose from RAX and did not hydrolyze 33-α-l-Araf-xylotetraose. Deletion of the CBM13 domain significantly decreased the activity toward insoluble corn xylan, indicating that CBM13 plays an essential role in hydrolyzing corn xylan.
Read full abstract