In smart homes, heavy reliance on appliance automation has increased, along with the energy demand in developing urban areas, making efficient energy management an important factor. To address the scheduling of appliances under Demand-Side Management, this article explores the use of heuristic-based optimization techniques (HOTs) in smart homes (SHs) equipped with renewable and sustainable energy resources (RSERs) and energy storage systems (ESSs). The optimal model for minimization of the peak-to-average ratio (PAR), considering user comfort constraints, is validated by using different techniques, such as the Genetic Algorithm (GA), Binary Particle Swarm Optimization (BPSO), Wind-Driven Optimization (WDO), Bacterial Foraging Optimization (BFO) and the Genetic Modified Particle Swarm Optimization (GmPSO) algorithm, to minimize electricity costs, the PAR, carbon emissions and delay discomfort. This research investigates the energy optimization results of three real-world scenarios. The three scenarios demonstrate the benefits of gradually assembling RSERs and ESSs and integrating them into SHs employing HOTs. The simulation results show substantial outcomes, as in the scenario of Condition 1, GmPSO decreased carbon emissions from 300 kg to 69.23 kg, reducing emissions by 76.9%; bill prices were also cut from an unplanned value of 400.00 cents to 150 cents, a 62.5% reduction. The PAR was decreased from an unscheduled value of 4.5 to 2.2 with the GmPSO algorithm, which reduced the value by 51.1%. The scenario of Condition 2 showed that GmPSO reduced the PAR from 0.5 (unscheduled) to 0.2, a 60% reduction; the costs were reduced from 500.00 cents to 200.00 cents, a 60% reduction; and carbon emissions were reduced from 250.00 kg to 150 kg, a 60% reduction by GmPSO. In the scenario of Condition 3, where batteries and RSERs were integrated, the GmPSO algorithm reduced the carbon emission value to 158.3 kg from an unscheduled value of 208.3 kg, a reduction of 24%. The energy cost was decreased from an unplanned value of 500 cents to 300 cents with GmPSO, decreasing the overall cost by 40%. The GmPSO algorithm achieved a 57.1% reduction in the PAR value from an unscheduled value of 2.8 to 1.2.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
1111 Articles
Published in last 50 years
Related Topics
Articles published on Modified Particle Swarm Optimization
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
1101 Search results
Sort by Recency