BackgroundPediatric gastroenteropancreatic neuroendocrine tumors are exceedingly rare, resulting in most pediatric treatment recommendations being based on data derived from adults. Trametinib is a kinase inhibitor that targets MEK1/2 and has been employed in the treatment of cancers harboring mutations in the Ras pathway. MethodsWe utilized an established human pediatric gastroenteropancreatic neuroendocrine-like tumor patient-derived xenograft (PDX) with a known NRAS mutation to study the effects of MEK inhibition. We evaluated the effects of trametinib on proliferation, motility, and tumor growth in vivo. We created an intraperitoneal metastatic model of this PDX, characterized both the phenotype and the genotype of the metastatic PDX and again, investigated the effects of MEK inhibition. ResultsWe found target engagement with decreased ERK1/2 phosphorylation with trametinib treatment. Trametinib led to decreased in vitro cell growth and motility, and decreased tumor growth and increased animal survival in a murine flank tumor model. Finally, we demonstrated that trametinib was able to significantly decrease gastroenteropancreatic neuroendocrine intraperitoneal tumor metastasis. ConclusionsThe results of these studies support the further investigation of MEK inhibition in pediatric NRAS mutated solid tumors.
Read full abstract