An unusual coastward expansion of the toxic dinoflagellate species Margalefidinium polykrikoides was observed in 2020 summer after a tropical storm passing Chesapeake Bay. Such coastward expansion was only recorded in 2007. A newly developed coupled Lagrangian particle tracking and harmful algal bloom model driven by environmental variables was used to investigate the underlying mechanisms and successfully reproduced the expansion patterns. Persistent pre-storm southerly winds favored the delivery of bloom source water originated inside the bay to the coast. Storm-induced strong upwelling of denser subsurface water interacted with the after-storm outflow plume (steered southward as the storm's impacts waned), forming a transport barrier to accumulate algae and delineate the coastwide bloom extent. Algal diel vertical migrations and transport barrier enable algae to stay in the nearshore regions. The storm-induced coastward expansion of M. polykrikoides might increase future bloom possibility in the coastal area.
Read full abstract