The aim of the work was to develop a method for modeling, testing, and identifying electromechanical actuators for rocket applications. Works were performed using a prototype solution designed for the ILR-33 AMBER suborbital rocket, developed by Łukasiewicz Research Network – Institute of Aviation. A set of physical relationships was used to create system’s mathematical model, including Kirchhoff’s laws, Newton’s laws, and nonlinear friction models. System’s tests were then performed. A new method of results analysis was applied herein to gather unknown parameters for the model and to confirm an elevated level of convergence between both model and experiment in all cases analyzed. The identification approach proved itself to be effective and useful. A complex approach concerning modeling, testing and identification of such actuators was explained for the first time in this paper. The methods presented herein can be applied in other disciplines, wherever electromechanical actuator systems are used, and where their proper identification is necessary to ensure system reliability and safety. Presented solutions are simple to implement, and the test stands do not require expensive measurement equipment. The results obtained permit to create a high fidelity model at a reasonably low computational cost.
Read full abstract