摘要 运用包络函数模型和传输矩阵方法计算了二类超晶格的能级结构.考虑到InAs与InxGa1-xSb结合存在应变,在计算中InAs/InxGa1-xSb二类超晶格的带阶采用模型固体理论处理.因为吸收系数与电子-空穴波函数交叠成正比,所以研究了InAs/InxGa1-xSb二类超晶格红外探测器的吸收波 关键词: 二类超晶格 / 红外探测器 / 波函数的交叠 / 传输矩阵 Abstract In this paper, the detection wavelength and the electron-hole wave function overlap of InAs/InxGa1-xSb type Ⅱ superlattice photodetectors are numerically calculated by using the envelope function and the transfer matrix methods. The band offset is dealt with by employing the model solid theory, which already takes into account the lattice mismatch between InAs and InxGa1-xSb layers. Firstly, the detection wavelength and the wave function overlap are investigated in dependence on the InAs and InxGa1-xSb layer thicknesses, the In mole fraction, and the periodic number. The results indicate that the detection wavelength increases with increasing In mole fraction, InAs and InxGa1-xSb layer thicknesses, respectively. When increasing the periodic number, the detection wavelength first increases distinctly for small periodic numbers then increases very slightly for large period numbers. Secondly, the wave function overlap diminishes with increasing InAs and InxGa1-xSb layer thicknesses, while it enhances with increasing In mole fraction. The dependence of the wave function overlap on the periodic number shows the same trend as that of the detection wavelength on the periodic number. Moreover, for a constant detection wavelength, the wave function overlap becomes greater when the thickness ratio of the InAs over InxGa1-xSb is larger. Keywords: type Ⅱ superlattice / infrared photodetector / wave function overlap / transfer matrix method 作者及机构信息 黄建亮, 卫炀, 马文全, 杨涛, 陈良惠 1. 中科院半导体研究所纳米光电实验室,北京 100083 基金项目: 国家重点基础研究发展计划(973项目)(批准号: 2010CB327602)资助的课题. Authors and contacts Huang Jian-Liang, Wei Yang, Ma Wen-Quan, Yang Tao, Chen Liang-Hui 1. 中科院半导体研究所纳米光电实验室,北京 100083 参考文献 [1] [1]Rogalski A 2007 Infrared Phys. Technol. 50 240 [2] [2]Becker L 2006 Proc. SPIE 6127 61270S [3] [3]Ashley T, Gordon N T 2004 Proc. SPIE 5359 89 [4] [4]Youngdale E R, Meyer J R, Hoffman C A, Bartoli F J, Grein C H, Young P M, Ehrenreich H 1994 Appl. Phys. Lett. 64 3160 [5] [5]Grein C H, Yang P M, Platte M E, Ehrenreich H 1995 J. Appl. Phys.78 7143 [6] [6]Plis E, Rodriguez J B, Kim H S,Bishop G, Sharma Y D, Dawson L R, Krishna S 2007 Appl. Phys. Lett. 91 133512 [7] [7]Li J V, Hill C J, Mumolo J, Gunapala S, Mou S, Chuang S L 2008 Appl. Phys. Lett. 93 163505 [8] [8]Delaunay P Y, Nguyen B M, Razeghi M 2009 Proc. SPIE 7298 72981 [9] [9]Hoffman D, Nguyen B M, Huang E K, Delaunay P Y, Bogdanov S, PManukar P, Razeghi M, Nathan V 2009 Proc. SPIE 7222 722215 [10] ]Schneider H, Liu H C 2006 Quantum Well Infrared Photodetectors (Germany: Springer) p11 [11] ]Chang Y C, Schulman J N 1985 Phys. Rev. B 31 2069 [12] ]Xia J B, Zhu B F 1995 Semiconductor Superlattice Physics (ShangHai: Science and technology Press) p388(in Chinese) [夏建白、朱邦芬 1995 半导体超晶格物理(中国上海:上海科学技术出版社)第388页] [13] ]Smith D L, Maihiot C 1987 J.Appl.Phys. 62 2545 [14] ]Vurgaftman I, Meyer J R, Ram-Mohan L R 2001 J. Appl. Phys. 89 5815 [15] ]Chuang S L 1995 Physics of Optoelectronic Devices (USA:John Wiley & Sons. Inc. ) p157 施引文献
Read full abstract