Quadrotor unmanned aerial vehicles are utilized in basically every sector of society, including the business, civil, and military industries. Popular applications include delivery, agriculture, target-acquisition, surveying, surveillance, and rescue. They are widely used due to their exceptional features such as accuracy, capability to perform swift inspections, simplicity in deploying perilous and uncertain missions, and additional praiseworthy attributes. This article presents a comprehensive analysis of the theoretical frameworks that have been proposed for the purpose of quadrotor modelling and control. Detailed examinations are conducted on every methodology that underpins the control algorithms, spanning from traditional linear to modern. The analysis looks at hybrid control technique models, which incorporate adaptive components across multiple controllers to improve overall performance and resilience by addressing individual algorithm shortcomings. This analysis also delves deeper into potential future research avenues. These include the development of learning-based or hybrid methodologies that employ machine learning and artificial intelligence to optimize performance and adaptability. For instance, model reference adaptive control systems can learn adaptation laws through machine learning techniques, as opposed to depending on predefined adaptation laws. By training neural networks or fuzzy logic controllers to forecast optimal adaptation parameters based on sensor data, the quadrotor can adjust to fluctuating conditions more effectively. A comparison table is provided to elaborate on the advantages, disadvantages, and hybrid versions of each control algorithm. This will serve as a concise guide that will promote innovation, facilitate the selection and integration of appropriate control algorithms, and enhance the functionality of quadrotor control systems.
Read full abstract