We developed the LabVIEW-based virtual instruments (VIs) to bridge a gap in commercial software and to enable systematic peak-overlapping studies to recognise the concentration levels enabling reliable simultaneous determination of major and minor constituents in samples with wide concentration proportions. The VIs were applied to a case study of the ion chromatographic determination of potassium as minor and sodium as a major ion with an IonPac CS12A column and 50 μL injection loop. Two successive studies based on multilevel two-factorial response surface experimental designs, (1) a model peak-overlapping study based on single-ion injections, and (2) an accuracy and precision study, provided guidelines for real sample analyses. By adjusting sample dilutions so that the sodium mass concentration was set to 340 mg/L, the simultaneous determination of potassium in the presence of sodium was possible in samples with sodium over potassium concentration ratios between 14 and 341. The relative expanded uncertainty associated with potassium ion determination was between 0.52 and 4.4%, and the relative bias was between -3.8 and 1.9%. We analysed Ringer's physiologic solutions, standard sea, trisodium citrate anticoagulant, and buffered citrate anticoagulant solutions. We confirmed that the VI-supported peak-overlapping studies contributed to the quality of results by enabling the evidence-based choices of concentration levels adjusted by a dilution.
Read full abstract