This work aims at assessing the applicability of a screening-oriented device dedicated to the establishment of increasingly complex phase diagrams of phase change materials. A thermography-based method has recently been proven to allow the detection of phase transitions of organic materials for multiple samples at a time. The phase transition detection capability of the infrared thermography method is here evaluated for metal systems based on well-referenced materials commonly employed in DSC calibration (pure sample of Gallium and a mixture of Gallium and Indium). The detected transitions are compared to literature data and DSC measurements. All transitions documented in the literature could be retrieved by thermography, and liquidus transitions are validated with DSC measurements. The encouraging nature of the results is discussed, and avenues for improving the method are considered.
Read full abstract