Atmospheric new particle formation (NPF), which has been observed globally in clean and polluted environments, is an important source of boundary-layer aerosol particles and cloud condensation nuclei, but the fundamental mechanisms leading to multi-component aerosol formation have not been well understood. Here, we use experiments and quantum chemical calculations to better understand the involvement of carboxylic acids in initial NPF from gas phase mixtures of carboxylic acid, sulfuric acid (SA), dimethylamine, and water. A turbulent flow tube coupled to an ultrafine condensation particle counter with particle size magnifier has been set up to measure NPF. Experimental results show that pyruvic acid (PA), succinic acid (SUA), and malic acid (MA) can enhance sulfuric acid-dimethylamine nucleation in the order PA < SUA < MA with a greater enhancement observed at lower SA concentrations. Computational results indicate that the carboxylic and hydroxyl groups are related to the enhancement. This experiment-theory study shows the formation of multi-component aerosol particles and the role of the organic functional group, which may aid in understanding the role of organics in aerosol nucleation and growth in polluted areas, and help to choose organic molecules of specific structures for simulation.
Read full abstract