This paper investigates rare flavor-changing decays of the top quark in the Bestest Little Higgs Model (BLHM). As a result, flavor-changing phenomena are introduced in the BLHM for the first time. In this study, we incorporate new flavor mixing terms between the light quarks of the Standard Model (SM) and the fermions and bosons of the BLHM. We compute the one-loop contributions from the heavy quark (B) and the heavy bosons (W′±,ϕ±,η±,H±)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$(W^{\\prime \\pm }, \\phi ^{\\pm }, \\eta ^{\\pm },H^{\\pm })$$\\end{document}. Our findings demonstrate that the branching ratios of decays t→qV\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$t\\rightarrow qV$$\\end{document} and t→qh0\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$t\\rightarrow qh^0$$\\end{document}, where q=u,c\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$q=u,c$$\\end{document} and V=Z,γ,g\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$V=Z, \\gamma , g $$\\end{document}, can reach larger branching ratios compared to their counterparts in the SM, except for the gluon case. Moreover, we observe that the processes with the highest sensitivity are Br(t→cZ)∼10-5\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$Br(t\\rightarrow cZ)\\sim 10^{-5}$$\\end{document}, Br(t→cγ)∼10-6\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$Br(t\\rightarrow c\\gamma )\\sim 10^{-6}$$\\end{document} and Br(t→ch0)∼10-8\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$Br(t \\rightarrow ch^0) \\sim 10^{-8}$$\\end{document} within the appropriate parameter space.
Read full abstract