Kidney disease (KD) is a progressive and life-threatening illness that has manifested into a global health crisis, impacting >10% of the general population. Hallmarks of KD include tubular interstitial fibrosis, renal tubular cell atrophy/necrosis, glomerulosclerosis, persistent inflammation, microvascular endothelial cell (MV-EC) dysfunction/rarefaction, and mitochondrial dysfunction. Following acute kidney injury (AKI), and/or during KD onset/progression, MV-ECs of the renal peritubular endothelial capillaries (RPECs) are highly susceptible to injury, dysfunction, and rarefaction. Pharmacological induction of mitochondrial biogenesis (MB) via 5-Hydroxytryptamine Receptor 1F (HTR1F) agonism has been shown to enhance mitochondrial function and renal vascular recovery post-AKI in mice; however, little is known about MB in relation to renal MV-ECs and RPECs repair mechanisms. To address this gap in knowledge, the in vitro effects of the potent and selective FDA-approved HTR1F agonist lasmiditan were tested on primary mouse renal peritubular endothelial cells (MRPECs). Lasmiditan increased mitochondrial maximal respiration rates, mRNA and protein expression of MB-related genes, and mitochondrial number in MRPECs. MRPECs were then exposed to pro-inflammatory agents associated with renal MV-EC dysfunction, AKI, and KD (i.e., lipopolysaccharides, transforming growth factor-β1, and tumor necrosis factor-α), in the presence/absence of lasmiditan. Lasmiditan treatment augmented MRPECs wound healing, endothelial tubular network formation (ETNF), enhanced barrier integrity, and blunted inflammatory-induced MV-EC dysfunctions. Together, these data suggest that lasmiditan induces MB and improves wound healing and ETNF of primary MRPECs in the presence/absence of pro-inflammatory agents, highlighting a potential therapeutic role for lasmiditan treatment in renal MV-EC dysfunction, AKI, and/or KD.
Read full abstract