This manuscript provides insight into optimally noise-matched three-stage Low-Noise Amplifiers (LNAs) by proposing a novel chart that illustrates the relationship between the gain of a three-stage LNA and inter-stage mismatch levels. Under certain conditions, the chart also indicates the required feedback inductor values for all transistors. It is demonstrated that, under the specific assumption of optimal noise and signal matching, the LNA gain depends on the levels of two inter-stage mismatches. Contrary to common belief, the results show that the LNA gain increases as the inter-stage mismatch levels rise. This finding is supported through the discussion of two LNA designs, one with lower and one with higher inter-stage mismatch levels, achieving gains of 24 dB and 26 dB, respectively, with a Noise Figure of 1.7 dB at the center design frequency of 28 GHz. Subsequently, one LNA topology is validated in a Monolithic Microwave Integrated Circuit (MMIC) implementation using WIN Foundry’s PIH1-10 GaAs E-mode technology. The MMIC characterization aligns with the simulated behavior, accounting for the unavoidable losses in the matching networks.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
3123 Articles
Published in last 50 years
Articles published on Effect Of Mismatch
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
3086 Search results
Sort by Recency